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ON MINIMAX POSITION CONTROL* 

A. N. KRASOVSKII 

The problem of controlling a differential system with indeterminate noise is examin- 
ed by the game-theoretic approach proposed and developed in /l--6/. The main result 
is the construction of the saddle point of the differential game being examined in 
the form of optimal mixed position strategies for a specific class of functionals 
designated as position functionals. It is established that the optimal strategies 
can be specified by functions depending solely on the current position and on a 
certain parameter the introduction of which is an essential element in the scheme 
being proposed. A stable approximation control scheme is constructed, guaranteeing 
the players results arbitrarily close to the game's value with a probability arhit- 
rarily close to one if only the time step is sufficiently small. 

1. We examine an object described by the differential equation 

Y‘ = f (t, y:.u, u), h<~<fi6, UEP, UEQ, If (t, Y, I’, L)) I t< X- (1 + j y I), x r= const (1.1) 

where y is an m-dimensional vector, t is time, u and v are vector-valued controls, P and 
Q are compacta. Function f is assumed to be continuous and to satisfy, in each bounded 

domain G, a Lipschitz condition in y with the constant Le7 We consider the motions 
starting in a prescribed bounded domain G,. Then any motions on the interval [t,,@f,encount- 
ered subsequently, do not leave some bounded domain G. All the continuous motions to be 
examined below satisfy a Lipschitz condition in t.Letus considertheproblemofcontrols u and I? 
that, resPectivelY, minimizeandmaximize a functional Y prescribedonthemotion gt,[-ls = {y it], 
& < t< @}. The result consists in the constructionofoptimal mixed strategies within t-he 
framework of a position differential game. In the scheme to be proposed a fundamental role 
is played by certain models. 

2. The state of an X-model at instant t is characterized by an s-dimensional vector 
r[It]. A set of Borel-measurable functions {u, [tf E P, pj ftf 20, j = 1,2,. . .,N(‘); PI ftf + . . . f 
~~(1) [tl = 1) is called an action I;'(r) (t*, t*) of the first player on the interval I_t;t, t*), to< 
t,< t* <<. A set of measurable functions {Q [tl E Q, qp [tf > 0, k = 1, 2, . ., N@); q1 (tJ + . . . + 

Y&z) itI = 11 is called an action F@)(t*, t*) of the second player. For a given initial posi- 
tion {t,, x*} the actions F(') (t+, t*) and p(*) (f,, t*) generate a motion x [tf, t, < t < t*, being 
an absolutely continuous solution of the equation 

N(l), N@f 

z’ ItI = ) 2, f (t, z itI> % ItI, Dk [d)‘Fj It1 ‘4k it) 
(2.3.) 

AII action F(l) (fan t*)(1;(2' (t+ t*)) is said to be elementary if UI It1 = Uj = const, 
(Uk ItI = qk f?l= qk = CO&). 

pj [t] = pj = const 
vk = con&, 

A rule that from any possible valuk (t,r,s>O} f ixes 
I=17 . . .> y&’ ui E p ({m. . . .> gN(Z)J, QJI, . . .,Q(%)f, 

the constant vectors{&, . . .,P,,,(~)}, 
Vk E@ is called a strategy u, on the first 

player (I/,of the second player). We construct the {E, df-motion of the ~-model, generated 
by strategy U, from position {Q., LT [t,f} in steps [xi, ~~+r]. Suppose that a partitioning h of 
interval Ito, 61 by points Ti has been chosen such that t, = r,<zi< . ..<z. ~6. We fix 
& > 0. If a position {ri,.r(riJ} is realized, then from {ri, 5 Irii, a} the strategy U, fixes 
the vectors {pj[i)} and {u~I+I) and the corresponding elementary action F(l) (ri, ri+J operates on 
the interval (rilri+r) . The second player can choose any action F(') (ri, ?i+l) in (2.1) . This 
pair of actions realizes the motion xi [tl, pi < t<~~+~, i.e., a solution of Eq. (2.1) for 
t .+ -= +i, t* = ti+l, UJ [tl = Uj[‘J, pj [tl = p~[%l. The motion of the x-model, generated by strategy 
V,is defined analogously. 

3. Let us examine the functionals y (rt, l-J*), tt,<tt*\<*tZ-t,J*fe= {.z itf, t, < t <,<}, defined 
on piecewise-continuous curves rf,f+ie having only a finite number of points of discontinu- 
ity of the first kind and being right-continuous. The functionals are continuous in the 
following sense: for any E>O there exists s(e)> 0 such that Ir($ 1.1~) -- y (@I-lB)J -=z c 
as soon as 

"uP,,,,,,cs 1 z(l) ItI - cd*) ItI ] < 8, z(i) [t] E G 
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Functionals representable in the form 

Y (21, ].I*) = 'D (Jt, [.If., a), a = y (IV 1.18) (3.1) 

where the function T (zl, [.lpr a), is continuous and does not decrease with respect to c when 
curve zI, [.ll* is fixed, are called position functionals. In particular, 

are such functionals. If function .r,, ].I6 is discontinuous at t m= t*, then in the notation 
'p (zt, ].]I*, a) the symbol it, [. Jp denotes the function s[t] for t, < t( t*. 

4. Let X (U, e, 6, t,,z,) :L (I~, [.Js} (X (V, E, 6, t,, I*) = {xi, I.]*}) be a bundle of is, A) - 
motions generated by strategy lJ,(V,,) from position {t*, CT*), t, E It,, 61 when (ri+l - ri) < 6. Let 

s”pv s’lJJ,s”Pa hf Iv (z-t, l~ld, Ir, 1.10 E x (V, e. 6. f*, z*)] = p (L*, 5 Lf*]) 

Strategy 17," is said to be optimal if for any 5>0 

y (zt 1/ [.I@) <y(l) (t*, z It,]) + 5, Zf, L.16 E x (U,O. &, fi? t,. z*), E < e (5). 6 < 6 (E) 
We note that for any preselected <>(j we have 

Y (St. ['lb) < 'p @to [.I!,, $1) ct*. z It*l)) -I- t 
where 51. I.lt, is the motion realized by the instant t, and ~,,].]e is the motion composed of 

51. 1. II, and any {E, A)-motion zt, [.I6 E X (Uxo, E, 6, t,. z It,]) with E< c(5), 6 -< 6 (F, 5). Strategy 
V,' is said to be position-optimal if for any <=_ (1 

Y (Zf" ].]u) 2 Y@) (t*? z It*]) - C, 5t, [.I* E x (V,“. e, 6, t,, I it*]), F < E (5). 6 < 6 (F, 5). 
We have 

Y (GO [.I*) > ‘p (.Tf* I. I,,, Y@) (t,, r It*])) - i 
where zt, I. It, is the motion realized by the instant t; and If, ].]s is the motion composed of 

xl0 [.lt, and =y {E, A)-motion m+ [.I* E X (Vg, e, 6, t,, z It,]), E < E (C), 6 < 6 (E, 5). 

We say that the pair (U,', V,'} constitutes a position saddle point‘ and yields the game's 

value y0 (6 5) if 

$1) (t, z) = $2) (t, z) ,= y” (t, x) 9 Y0 (t*? x [t*l) > ‘p (J/, [.11*, Y0 ct*, 32 It*])) - i 

xt* [.I* E x (U,“, E, 6, t,, 5 b*l), Y0 ct*, z It*]) < ‘p (a, I.lP, Y” (t*, z It*])) + 6 

It, 1.b E x (V,“, E, 6, t,, 5 b*l) 
for any <> 0 when E< ~(5) and 6 <6 (E, 5). The problem is to construct the strategies 

{UC, vaj constituting the saddle point. 

5. The state of the W-model is characterized by the n-dimensional vector ra]t]. The 

motions of the W-model are generated by actions defined in the same way as for the z-model 

and which are marked by asterisks, 17,(l) (t*, t*) and p*(z) (1,, t*), to distinguish them from the 

actions of the .r-model. A motion of the u>-model on interval it,. t*l is a solution of 

N(l), N(2) 

W’ It1 = f (t3 w ItI, uj It13 vk [tl)‘P*j [tl’q*k ItI> w[t*l = u’* 
(5.1) 

A rule which at an instant ti > t, fixes ri+i > 7~ and F$) = Ff' (TV, ~~+i) on the basis of given 

{ 71, Fk’,‘, F,?, s = 0, 1, . ., i -- I}, F&t; = Fr) (T,, %,+I) 
F:” = Ft’ (TV, T~+I) 

is called a Q,I_,u,,, -procedure. The first 

player fixes from the known Ti+l and /$j. In the notation Qtr,,V,, the symbol 

{t,,w,} indicates that the motion is formed from the position {tw u.*}. Procedures in which the 

number of instants Ti from TO= I, to 6 is finite for each possible realization of w1, I.ls 
are admissible. This number can be different for different realizations. Realizations with 

any number of instants 7: are possible. 

Let b be some number. A procedure QU "., "‘.I 

denote the* least upper bound of the 

is called ais(~,~~i~~~-p~~ced~;s,~,: fozeany 
motion 1L'I [.I* generated by it the condition y(w,, ].I@)> 13 

p for which a (p - Q,,*,2,.,r)-procedure exists. It can be 

shown that function p (t*, We) is continuous in u'. The following statements are valid. 

Lemma 5.1. Let a position {t*, w,) be given and let 1* > f,. F*> () and F!$ (t.+, t*) be 

specified. Then we can find E* > 0 and an action F!$ (t*, I*) which in pair with Ff' (t*, t*) 
generates a motion 1~',_ Ialp such that 
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‘p (wt. [.I!*, p (t*, W*) + 2E*) > p @*, w*) + 2E* (5.2) 

Lemma 5.2. Let a position {t*, w*} be given and let t* > t,, a* > 0 and a motion 

WI, I. It* generated by a (B - Qu,, ,P,}I -P rocedure with fi = p (t*, IL'*) - s, be specified. Then 

we can find s* > 0 such that 

V (WI, I.lt*, p (t*, W*) - 2&*) > p (t*, LD*) - 2&*, w* = 201, [t*lr. (5.3) 

Consider the function 

h (t, z, 10) = 1 d - u~/*exp {--3& .(t - to)) (5.4) 

Lemma 5.3. Let a bounded domain G* be specified in space {r) and let e > 0. Then we 

can find vectors {or, . . . . uN}, {u~....,L.x}, Uj E P, vk E Q, N = N (E, G*),and a number 6 (a, G*) >0 
such that if the vectors {@IO, . . .i pn-“1 and {ca”, . . ., pm’} have been defined from the conditions 

N,N 

ma) & <s*.f (t*, Q, uj, Vk) ‘pj”qk) = min Idem (pj” -+ pj) 
Y > P 

N,N 

(5.5) 

min B (s*.f(t*, we, u,, Vk)‘p*i’qIk> =max Idem(q~h.-+q,k) 
P, l,k=l Q* 

(5.6) 

where s* = .r* - w*, for t, E It,,, +I, r* E G* and u'* E G* , then for t*< t < t, + 6 (E,G*) the 
elementary action I;(') (t*, t), corresponding to iPj"l3 in pair with any action 

and the elementary action F*(2) @*, t), corresponding to 
F@) V*, 1) 7 

{q*lj"), in pair with any action 

F*(l) (L*, t), generate motions r Ltl and w[tl for which 

I. (f, z [tl, w [d) < Ir (t*, I*, (L’*) + E. (t - t*) (5.7) 

Here and further the symbol Idem in the right hand side of an equality denotes an expression 

coinciding with the left hand side of this equality with the change of symbols indicated with- 

in the parentheses. 

Lemma 5.4. This lemma can be stated analogously to Lemma 5.3 by interchanging the 

symbols p and q, as well as the actions F(l) (t*, t) and F(Z) (t*, t), 

6. We construct strategies U," and ~7: which we call extremal. We select s>O and 

{t,,z,). By K,we denote the set of points w satisfying the inequality 

h (t*! z*, w) < e. (t* - to) (6.1) 

A point w*EK* is called an accompanying point if it satisfies the condition: 

a) for constructing strategy U,' 

P (t*, m*) =*$; p @*, w) (6.2) * 

b) for constructing strategy V,' 

p Q*, w*) = 1na.y p (t*, 20) 
WEK, (6.3) 

There can be several such points w* . We choose one of them for each given {t*,z,,c}. We 

fix E* > 0 and we select domain G* such that w,EG* for all .s(E* and x,=G. Later 
we select only a < E*. 

An extremal strategy U," (V,P) is a rule that associates with possible values of (&+, s} 

the VeCtOrS {Uj} and {pj")({Vk} and {qk"}) connected by condition (5.5) (corresponding to the 

condition from Lemma 5.4) and satisfying estimate (5.7) wherein w,istheaccompanying point. 

As a consequence of the measurable selector theorem /7/ the vectors {Pi"). and {qk’f can be 
taken as functions Borel-measurable in z*, since conditions (5.5), (5.7), the corresponding 

conditions from Lemma 5.4, and relations (6.1)- (6.3) define for the choice of {pjG} and (qk') 
compact sets that are semicontinuous relative to z.+. 

Suppose that the first player is guided by strategy Use a;d has chosen e> 0 and the 
partitioning A = (ri}. These data generate a certain motion z&t* L’L.7. Let w[~iI be the ac- 
companying point for z[T~]. With motion 2beItl we associate an accompanying motion of the w- 
model. On the half-open interval ri< t(Ti+l this is a solution of Eq. (5.1) with boundary 
condition (ri, UJ ITi]}, generated by actions F*(2) (ri, T~+~) and F*(l) (Ti, Ti+1) from Lemma 5.3 with 
.r * = .z 1~~1 and w* = w [r;l. Motion u+, [.I* can undergo discontinuities at instants ri_ We 
denote uJiJ = lim ui [t], t _ ri - 0. 

Relying on Lemma 5.3 and on the properties of the extremal strategy we can show that for 

any PC') (ri. ri+l) and F*(r) (Ti, zi+r)t.he estimateh (t, z Ae [tl, w [tl) < E + E. (t - t*), t, < t < 6, holds if 

mas I T~+I - Ti I < 6 (G ~3. Moreovert p (T~+I, w [Ti+lI) < p (Ti+l, cdi+ll). In the accompanyingmotion u,[tl 

let the action F,(l) (pi, %+I) ateach stepbe chosen in accordwith Lemma 5.1. Then ateach stepwehave 

cp (UT, 1’1,,+,, P(fz+1r ul[i+l’) + %+I) < p (Zi, w [Tjl) + 2Fi 
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whence we obtain 7 (z+~ f*]b) <p (ri, w ]zi]) + 2&i and, setting eg = s, by induction we then 
have 

Y (w, I*]*) < P (t*> m*) -l- 2s (6.4) 

Using the proximity of motion xFht, ].* u~'fs to motion 20i, ]-I*, the continuity of functional v 
and the continuity of p (~,Lu) in ~3, we obtain the following result. 

Theorem 6.1. Let position (t,,.r,) be realized. If, beginning with some instant i,~ 
the first player uses the extremal strategy tiXe, then for any arbitrarily small E and 
sufficiently small step s(.s) we have 

P (xi,, ]*I+) Q p (t*, r,) + .E (e), lim E, (e) = 0 (6.5) 

for any {Ed A} -motion $f, ].]a, z",t% Il,l,p = r,l 
E-0 

Now let the second player be guided by the extremal strategy VG. Rely-on the propert- 
ies of this strategy and on Lemmas 5.2 and 5.4, we can derive the relations h(t,&[t], ~1 It])," 

E + E.(t - Tj), Ti < t < ?i+lr 0 6-M. It’ ITi+tl) > p {Ti+l* Zdi+“) and then 

Y (u:,, I.]*) > p (t*, w*) - 2e (6.6) 

where {t*. li;~= m].#J} is the accompanying point for position {t*, ZC*}, (PI, 1.10 is the motion of 
the Vi-model, which at each step is generated by the action Ftffti,5i+1) chosen from the con- 
dition of Lemma 5.4, corresponding to condition (5.6), and by the action FF' (Ti,T,+l) fixed 

by a@ - Qfr,, r[TI.l))-procedure with fl = p (TV, u' 1~~1) - ei. From this we obtain the following result. 

Theorem 6.2. Let position {I,,z.+} be realized. If, beginning with some instant i,. 
the second player uses the extremal strategy bXe, then fox any arbitrarily small e and suf- 
ficiently small step ?j (a)> 0 we have the estimate 

p (s",,, i.1~3) > p (t+, z*) - n (e). linl 11 (z) = 0 (6.7) 

for any {E. A}-motion. 
E--rO 

A comparison of Theorems 6.1 and 6.2 leads to the next statement. 

Theorem 6.3. The extremal strategy C: is the first player's optimal strategy. The 
cxtremal strategy I': is the second player's optimal strategy. The strategy pair {u;, V:} 
forms a position saddle point. The game's value is 1" (t, X) := (, (t, J'). 

7. Let us now consider the original problem on the control of the given object (1.11. 
Using the control-with-guide method /l/, wherein the x-model is selected as the guide we 
define a certain united strategy C: of the first player. 

The motion of the object, generated from position {to3 YO E co) by strategy U. is con- 
structed simultaneously with some {s, A)-motion of the x-model, generated by some strategy 

w, included in lJ. Suppose that u, F> 0 and A == {ti) have been chosen. From the data 
{y [T,l, X [Zil, Ti, 8) SOme strategY LTV included in u fixes the elementary action F:;'(T~. 'Gil-1). 

A random test is carried out, corresponding to the probability distribution 
of the random variable (211, . * ., u } .1((t) , defined by the action Fi:' (Ti. z,+,f. 

Thi; ;&;; s’ &;;, 
fi,IiT' 

U[i] is the control for Ti < t < zi+i. The second player, using some random mechanism of his 
own, develops a function uIi] ItJ, zi < t < ~i+l . The object's motion on interval 1% 7i+J is a 
solution of the equation 

(7.1) 

The motion & [t] is realized by the same partitioning A={~~)fromsomesuitableposition{&,~~). 
In the real control of the united system made up of the Y-object and the x-model only the 
real first player controls the motion of the z-model. However, in connection with the mat- 
erialfromSects.l-6 it is convenient to separate his action into the action of a fictitious 
first player who fixes F(GI“~,x~+~) in accordance with the selected strategy l_J, and the action 
of a fictitious second player who fixes F(*f (xi, zi+>) in accordance with some rule Rt;. Thus, 
the real first player has at his disposal the collection (V,, U,, Ru,z,) which is called his 
united strategy U. The motion (y [t], s [t]} generated by u is denoted {yf. I., Ul,, .rt,]., Ul*). 
It is obtained as a random motion since the choice of the forces is determined by random tests. 
The motions of the object and of the x-model, generated by strategies V, and V, and by some 
rule Rv, and the united strategy v of the second player are determined in similar fashion. 
The second player, of course, uses his own s-model. 

Let us describe the construction of theextremal strategy u'. We assume that the flnc- 
tions u[ti] and u [f are stochastically independent for Zi < t G zi+l. The process {y ]t],X It]} 
being analyzed here is formalized as a probabilistic process within the framework of the strict 
concepts of probability theory. This raises no principal difficulties since all the construc- 
tions carried out yield control functions measurable with respect to& (~~1, s[zi]). We choose 
the initial condition Jg from the condition 
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h (to, x0, Yo) Q e (7.2) 

The x-model's motion z It] is determined by the extremal strategy ffle. As the rule Rue we 

take one which fixes the actions F(2)(~i,~i+i) defined by the condition 

N.N 
min x (gliJ.f(ri,slti],Uj,uk).pj.qiro) =maxIdem(q,"-+q~), gIiJ=y[zi]---x[zJ (7.31 
P i.k=l P 

The rule by which the elementary action Fy(l) (t*, t) = {Uj, pj”} is fixed from the quantities 

{L/*,X*, t,, e),Y* "G>z* EG*, by the condition 

mal ,$ <g*.f(t*, Y*rsj,Vk).pjo.qk) =min Idem(pj”-+pj), (7.4) 
Q j, k=l 

g*=y*---2, 
B 

is called the extremal strategy u,'. The extremal strategy V,* is defined analogously. The 

strategy U" = {U,', Uze, R”“,xO} is called the united extremal strategy. The united extremal 

strategy Ve is constructed analogously. The following statement is valid. 

Theorem 7.1. For any numbers c>O and O< x( 1 we can always select E>O and 
6 (E, G*)> 0 such that forallmotions generatedby U" = {UUe, U,", Rue, x,,} the estimate 

p (v (Yh I T WB) < p (to? Yo) + 5) > x , P (v (Yl, I * 3 We) <P ct*, y [1*1) + 5) > x (7.5) 

p ((P (Y!o I. t m,9 P 0, Y V*l)) < p (to, Y) + 5) > x 

will hold for all motions generated by Ve = {V,‘, V,‘, Rye,x,,) and estimates analogous to (7.5) 

will hold with U" replaced by V” and 's by -5 , if only maxi 1 %i+l - q 1 < 6 (e, G*) . By 
P we have denoted the probability of the corresponding event. We observe that, by defini- 

tion, from these conditions follow as well the fulfillment of conditions 

p (V(Yf0 I.? We) <v (Yl, 1.11,. P ct*v Y It*l)) + 5) > XJ ~(~(~r,l~~~~l,)~cp(y~,I~l~,,~(~,,~I~,l))-~)>x (7.6) 

Thus the relations (7.5) and (7.6) obtained permit us to call the quantity ~(t,y) the 

value of the game and to call the united extremal strategies Ue and V” described optimal 

strategies yielding the game's saddle point. 

8. The fundamental Theorem 7.1 has been proved under the assumptions that functions u[t] 

and v[t] are stochastically independent for ti < t<zi+l. If the question is of control in 

agamewith Nature, this independence condition can be adopted as a separate postulate. With- 

out a logical contradiction this postulate imposes a constraint on the unknown mechanisms 

forming the noise u[tJ. However, if we treat the process as a game between two real players 

each of whom can act on their own strategies U and V with their own partitionings AU = {riU} 

andAve {%iv),thenonecannot adopt such an independence condition as a postulate. The con- 
nection between u It] and ~[tldepends upon the strategies U and V and the partitionings Au 
and A” chosen. However, this difficulty can be overcome in the following well-known manner. 

We assume that the forces u [t] = u [zil'], -c;"<t<rz, and ~[tI=~l~~“I, ri”<t<ti+~, on object 
(1.1) are obtained as the results of randcm tests with probability distributions {py} and 

{4k0}, which now correspond not to the values y [Ti’I and y IriVl but to the values y [tiU - ru] 

and y[~~v - TV], where +>O and TV>.0 are constant information lags. Then, relying once 
again on the results in Sects-l-7, we obtain the following statement_ 

Theorem 8.1. The united extremal strategies U” and V, described in Sect.? but 
developed on the basis of the lagging values y [flu - ~“1 and Y[Ti"--V], constitute thesaddle 

point {v”,V’} of the game being analyzed, with value v0 = 6, (t, y), i.e., thev ensure the 
fulfillment‘ of conditions (7.2)- (7.5) if only the conditions 

are fulfilled, where 6'-, T(, 6V, ~1 are sufficiently small positive numbers. 
It is important to note here that now both players simultaneously form one and the same 

motion I ItI, each using his own x-model and each forming this motion on the basis of his 
own united strategy UC or V", and his own partitioning A,- or A". 

9. The fundamental results given in Theorems 7.1 and 8.1 remain in force under conditions 
on function f somewhat more general than those in Sect.1. To be precise, we assume that 
this function _is bounded in any bounded domain G,is continuous in Y,U,U for fixed t, and is 
Borel-measurable in t for fixed Y, [L, u . We consider the equation 

x[rl=xlt*l+~ CSf(t,a:[tl,21,U).r)(dV,dl(lt)dt (9.1) 
1* iJ Q 

where 11 (&,du 1 t) is a probability measure on I' x Q, weakly Borel-measurable in t. Let G 
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be a bounded domain. We assume that Eq. (9.1) has a unique solution for every 1c L~,IEC and 

every measure q, which for all to < t< 6 i s contained in some bounded domain Cc;*. All these 
conditions are obviously fulfilled under the conditions in Sect.1. However, under these more 
general conditions we can repeat all the lemmas and theorems from Sects.l-8, merely replac- 

ing in them the function h of (5.4) by a certain function h. constructed in accordance with 
the ideas in /6/ and, when choosing the extremal vectors {pj") and {~h~},replacing the func- 
tion f by a suitable continuous function fe which approximates function f in a sufficiently 

large domain G*, such that 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

The author thanks Iu. S. Osipov and V. E. Tret'iakov for much help with the paper. 
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